3.1

8.1 Exercises

- Three balls are selected at random without replacement from an urn containing four green balls and six red balls. Let the random variable X denote the number of green balls drawn.
 - a. List the outcomes of the experiment.
 - **b.** Find the value assigned to each outcome of the experiment by the random variable X.
 - c. Find the event consisting of the outcomes to which a value of 3 has been assigned by X.
- 2. A coin is tossed four times. Let the random variable X denote the number of tails that occur.
 - a. List the outcomes of the experiment.
 - **b.** Find the value assigned to each outcome of the experiment by the random variable X.
 - c. Find the event consisting of the outcomes to which a value of 2 has been assigned by X.
- 3 A die is rolled repeatedly until a 6 falls uppermost. Let the random variable X denote the number of times the die is rolled. What are the values that X may assume?
- 4 Cards are selected one at a time without replacement from a well-shuffled deck of 52 cards until an ace is drawn. Let X denote the random variable that gives the number of cards drawn. What values may X assume?
- Let X denote the random variable that gives the sum of the faces that fall uppermost when two fair dice are rolled. Find P(X = 7).
- Two cards are drawn from a well-shuffled deck of 52 playing cards. Let X denote the number of aces drawn. Find P(X = 2).

In Exercises 7–12, give the range of values that the random variable X may assume and classify the random variable as finite discrete, infinite discrete, or continuous.

- 7 X = The number of times a die is thrown until a 2 appears
- (8) X = The number of defective iPods in a sample of eight iPods
- X =The distance in miles a commuter travels to work
- X =The number of hours a child watches television on a given day
- X =The number of times an accountant takes the CPA examination before passing
- (12.) X = The number of boys in a four-child family

In Exercises 13–16, determine whether the table gives the probability distribution of the random variable X. Explain your answer.

13.

x	-3	-2	-1	0	1	2
P(X=x)	0.2	0.4	0.3	-0.2	0.1	0.1

14.

_	-2	-1	0	1	2
		-		-	-
P(X=x)	0.2	0.1	0.3	0.2	0

15.

			-	4	•	£
x	1	2	3	4	3	0
P(X=x)	0.3	0.1	0.2	0.2	0.1	0.2

16

Service regions description region to	-			-	
x	-1	0	1	2	3
P(X=x)	0.3	0.1	0.2	0.2	0.2

In Exercises 17 and 18, find conditions on the numbers *a* and/or *b* such that the table gives the probability distribution of the random variable *X*.

17.

*	0	2	4	6	8
P(X=x)	0.1	0.4	a	0.1	0.2

18.

x	-1	0	1	2	4	5
P(X=x)	0.3	a	0.2	0.2	b	0.1

19. The probability distribution of the random variable X is shown in the accompanying table:

x	-10	-5	0	5	10	15	20
P(X=x)	.20	.15	.05	.1	.25	.1	.15

Find:

- **a.** P(X = -10)
- b. $P(X \ge 5)$
- c. $P(-5 \le X \le 5)$
- d. $P(X \leq 20)$
- e. P(X < 5)
- **f.** P(X = 3)

20. The probability distribution of the random variable X is shown in the accompanying table:

*	-5	-3	-2	0	2	3
P(X=x)	.17	.13	.33	.16	.11	.10

Find:

- **a.** $P(X \leq 0)$
- **b.** $P(X \le -3)$
- c. $P(-2 \le X \le 2)$
- **d.** P(X = -2)
- e. P(X > 0)
- f. P(X=1)
- 21. Suppose that the probability distribution of a random variable X is represented by the accompanying histogram.

Shade the part of the histogram whose area gives the probability $P(17 \le X \le 20)$.

Exams An examination consisting of ten true-or-false questions was taken by a class of 100 students. The probability distribution of the random variable X, where X denotes the number of questions answered correctly by a randomly chosen student, is represented by the accompanying histogram. The rectangle with base centered on the number 8 is missing. What should be the height of this rectangle?

- 23. Two dice are rolled. Let the random variable X denote the number that falls uppermost on the first die, and let Y denote the number that falls uppermost on the second die.
 a. Find the probability distributions of X and Y.
 - **b.** Find the probability distribution of X + Y.
- Authority in a certain community conducted a survey of 1000 families to determine the distribution of families by size. The results follow:

Family Size	2	3	4	5	6	7	8
Frequency of	A ST.	Time	1				100
Occurrence	350	200	245	125	66	10	4

- **a.** Find the probability distribution of the random variable X, where X denotes the number of people in a randomly chosen family.
- **b.** Draw the histogram corresponding to the probability distribution found in part (a).
- c. Find the probability that a family chosen at random from those surveyed has more than five members.
- WAITING LINES The accompanying data were obtained in a study conducted by the manager of SavMore Supermarket.

In this study, the number of customers waiting in line at the express checkout at the beginning of each 3-min interval between 9 A.M. and 12 noon on Saturday was observed.

Customers	0	1		2	3	4
Frequency of						
Occurrence	1	4		2	7	14
Customers	5	6	7	8	9	10
Frequency of						- Annie Propins
Frequency of Occurrence	8	10	6	3	4	1

- a. Find the probability distribution of the random variable X, where X denotes the number of customers observed waiting in line.
- Draw the histogram representing the probability distribution.
- c. Find the probability that the number of customers waiting in line in any 3-min interval between 9 A.M. and 12 noon is between 1 and 3, inclusive.
- 26. Money Market Rates The interest rates paid by 30 financial institutions on a certain day for money market deposit accounts are shown in the accompanying table:

Rate, %	3	3.25	3.55	3.56
Institutions	1	7	7	1
Rate, %	3.58	3.60	3.65	3.85
Institutions	1	8	3	2

Let the random variable X denote the interest rate per year paid by a randomly chosen financial institution on its money market deposit accounts.

- a. Find the probability distribution associated with these data.
- b. Find the probability that the interest rate paid by a financial institution chosen at random is less than 3.56% per year.
- 27. TELEVISION PILOTS After the private screening of a new television pilot, audience members were asked to rate the new show on a scale of 1 to 10 (10 being the highest rating). From a group of 140 people, the following responses were obtained:

Rating	1	2	3	4	5	6	7	8	9	10	
Frequency of Occurrence	1	4	3	11	23	21	28	29	16	4	

Let the random variable X denote the rating given to the show by a randomly chosen audience member.

- a. Find the probability distribution associated with these
- b. What is the probability that the new television pilot got a rating that is higher than 5?