Differentiation: Lesson 5 Exercises

(7.5 Exercises)

The Product & Quotient Rules

Find the derivative of each function.

1.
$$f(x) = \frac{1}{3}(2x^3 - 4)$$

2.
$$f(x) = (x^2 - 2x + 1)(x^3 - 1)$$

3.
$$f(x) = (x^3 - 3x)(2x^2 + 3x + 5)$$

4.
$$f(x) = \frac{x+1}{x-1}$$

7.
$$y = \frac{x^2 + 2x}{x}$$

9.
$$y = \frac{7}{3x^3}$$

10.
$$y = \frac{4}{5x^2}$$

11.
$$y = \frac{3x^2 - 5}{7}$$

12.
$$y = \frac{x^2 - 4}{x + 2}$$

13.
$$f(x) = \frac{3x-2}{2x-3}$$

14.
$$f(x) = \frac{x^3 + 3x + 2}{x^2 - 1}$$

21.
$$h(t) = \frac{t+1}{t^2+2t+2}$$

Name_____ Date _____

Basic Rules of Derivatives and Derivatives as Rates of Change Review

1.
$$f(x) = 7x^2 - 4x + 1$$

2.
$$f(x) = x^5 - x^4 + x^3 + x^2$$

3.
$$f(x) = \frac{1}{x^3}$$

4.
$$y = \frac{2}{5x^{10}}$$

5.
$$y = \frac{2x^3 + x^2 - 5x}{x^2}$$

6.
$$f(x) = \frac{6x^2 + 3x - 5}{x}$$

7.
$$f(x) = \sqrt[5]{x}$$

8.
$$f(x) = \frac{4}{x^2} - \frac{2}{x^4}$$

- 9. Find the equation (in slope-intercept form) of the tangent line to the graph of $f(x) = 2x^3 x^2 3x$ at the point (1, -2).
- 10. The height h of a ball thrown straight up with an initial speed of 96 ft/sec from ground level is $h = -16t^2 + 96t$, where t is the elapsed time that the ball is in the air.
- a) When does the ball strike the ground?
- b) What is the instantaneous speed of the ball when it strikes the ground?
- c) What is the instantaneous speed of the ball at t = 2?
- d) When is the instantaneous speed of the ball equal to zero?