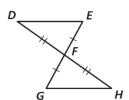

Fill in the missing statements or reasons.

1. Given: PQ≅RS, and ∠PQS≅∠RSQ

Prove: △ABC≅△DBC

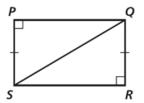
Statements	Reasons
1.	1. Given
2.	2. Given
3. QS ≅ QS	3.
4. ΔPQS≅ΔRSQ	4.

Given: $\overline{AB} \cong \overline{ED}$ C is midpoint \overline{BD} $\overline{AB} \perp \overline{BD}$; $\overline{ED} \perp \overline{BD}$

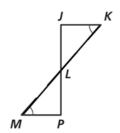

Prove: $\triangle ABC \cong \triangle EDC$

Statements	Reasons
$\overline{AB} \cong \overline{ED}$	1. Given
C is midpoint \overline{BD}	
$1.\overline{AB} \perp \overline{BD}; \ \overline{ED} \perp \overline{BD}$	
2. $\angle B$ and $\angle D$ are right angles	2.
3.	3. definition of midpoint
4.	4. All right angles are congruent.
$5. \Delta ABC \cong \Delta EDC$	5.

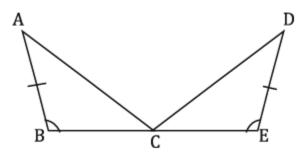
Complete a proof for each. You may write a flow proof OR a two-column proof.


3. Given: $\overline{EF} \cong \overline{FG}$, $\overline{DF} \cong \overline{FH}$

Prove: $\triangle DFE \cong \triangle HFG$


4. Given: $\angle P$ and $\angle R$ are right angles, $\overline{PS} \cong \overline{QR}$

Prove: $\triangle PQS \cong \triangle RSQ$



5. Given: $\angle K \cong \angle M$; L is the midpoint of \overline{MK} .

Prove: $\Delta JKL \cong \Delta PML$

6. Given: C is the midpoint of \overline{BE} , $\angle B \cong \angle E$, and $\overline{AB} \cong \overline{DE}$

Prove: △ABC≅△DEC