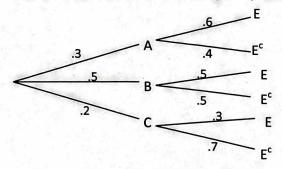
Solve each of the following. Show work (when possible)!!! Attach separate paper if necessary.


Lesson 7.4

- Two cards are selected at random without replacement from a well-shuffled standard 52-card deck.
 A. Find the probability that both cards are red.
 - B. Find the probability that at least one of the cards is black.
- 2. A jar contains six red, five yellow, and four green candies.
 - a) If one candy is selected at random, what is the probability that it is yellow?
 - b) If two are selected without replacement, what is the probability that both are red?
 - c) If three are selected without replacement, what is the probability that two are red?
 - d) If three are selected without replacement, what is the probability that at least one is green?
- 3. In a group of 20 ballpoint pens on a shelf in a department store, 2 are known to be defective. If a customer selects 3 of these pens, what is the probability that
 - a) At least 1 is defective?
 - b) No more than 1 is defective?

Lesson 7.5

- 4. Of 320 male and 280 female employees at a company, 160 of the men and 190 of the women are on flex-time (flexible working hours). An employee is selected at random.
 - a) Find the probability that a female employee is on flex time.
 - b) Find the probability that an employee is a male, given that they are not on flex time.

- **5.** Let E and F be two events and suppose P(E) = .35, P(F) = .55, and $P(E \cup F) = .7$.
 - a) Find $P(E \cap F)$.
 - b) Find P (E| F).
- 6. Use the tree diagram to find the given probabilities.

- a) P(A ∩ E)
- b) P(E| A)
- c) P(E)
- d) P(Ec)

Lesson 7.6

7. For question 6 above, find P(B| E).

8. Bill commutes to work. He takes the train 3/5 of the time and drives 2/5 of the time. If he takes the train, he gets home by 6:30 pm 85% of the time. If he drives, then he gets home by 6:30 pm 60% of the time. If Bill gets home by 6:30 pm, what is the probability that he drove to work?